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DEFINITIONS AND REPRESENTATION  

 An undirected graph G is a pair (V,E), where V is a 
finite set of points called vertices and E is a finite 
set of edges.  

 An edge e ∈ E is an unordered pair (u,v), where u,v 
∈ V.  

 In a directed graph, the edge e is an ordered pair 
(u,v). An edge (u,v) is incident from vertex u and is 
incident to vertex v.  

 A path from a vertex v to a vertex u is a sequence 
<v0,v1,v2,…,vk> of vertices where v0 = v, vk = u, and 
(vi, vi+1) ∈ E for I = 0, 1,…, k-1.  

 The length of a path is defined as the number of 
edges in the path.  



DEFINITIONS AND REPRESENTATION  

a) An undirected graph and (b) a directed graph. 



DEFINITIONS AND REPRESENTATION  

 An undirected graph is connected if every pair of 

vertices is connected by a path.  

 A forest is an acyclic graph, and a tree is a 

connected acyclic graph.  

 A graph that has weights associated with each 

edge is called a weighted graph.  



DEFINITIONS AND REPRESENTATION  

 Graphs can be represented by their adjacency 

matrix or an edge (or vertex) list.  

 Adjacency matrices have a value ai,j = 1 if nodes i 

and j share an edge; 0 otherwise. In case of a 

weighted graph, ai,j = wi,j, the weight of the edge.  

 The adjacency list representation of a graph G = 

(V,E) consists of an array Adj[1..|V|] of lists. Each 

list Adj[v] is a list of all vertices adjacent to v.  

 For a grapn with n nodes, adjacency matrices take 

Θ(n2) space and adjacency list takes Θ(|E|) space.  



DEFINITIONS AND REPRESENTATION  

An undirected graph and its adjacency matrix representation. 

An undirected graph and its adjacency list representation.  



MINIMUM SPANNING TREE  

 A spanning tree of an undirected graph G is a 

subgraph of G that is a tree containing all the 

vertices of G.  

 In a weighted graph, the weight of a subgraph is the 

sum of the weights of the edges in the subgraph.  

 A minimum spanning tree (MST) for a weighted 

undirected graph is a spanning tree with minimum 

weight.  



MINIMUM SPANNING TREE  

An undirected graph and its minimum spanning tree. 



MINIMUM SPANNING TREE: PRIM'S 

ALGORITHM 

 Prim's algorithm for finding an MST is a greedy 

algorithm.  

 Start by selecting an arbitrary vertex, include it into 

the current MST.  

 Grow the current MST by inserting into it the vertex 

closest to one of the vertices already in current 

MST.  



MINIMUM SPANNING TREE: PRIM'S ALGORITHM 

Prim's minimum spanning tree algorithm. 



MINIMUM SPANNING TREE: PRIM'S 

ALGORITHM 

Prim's sequential minimum spanning tree algorithm. 



PRIM'S ALGORITHM: PARALLEL FORMULATION  

 The algorithm works in n outer iterations - it is hard to execute 

these iterations concurrently.  

 The inner loop is relatively easy to parallelize. Let p be the 

number of processes, and let n be the number of vertices.  

 The adjacency matrix is partitioned in a 1-D block fashion, 

with distance vector d partitioned accordingly.  

 In each step, a processor selects the locally closest node, 

followed by a global reduction to select globally closest node.  

 This node is inserted into MST, and the choice broadcast to all 

processors.  

 Each processor updates its part of the d vector locally.  



PRIM'S ALGORITHM: PARALLEL FORMULATION  

The partitioning of the distance array d and the adjacency matrix A 
among p processes.  



PRIM'S ALGORITHM: PARALLEL FORMULATION  

 The cost to select the minimum entry is O(n/p + log 

p).  

 The cost of a broadcast is O(log p).  

 The cost of local updation of the d vector is O(n/p).  

 The parallel time per iteration is O(n/p + log p).  

 The total parallel time is given by O(n2/p + n log p).  

 The corresponding isoefficiency is O(p2log2p).  



SINGLE-SOURCE SHORTEST PATHS  

 For a weighted graph G = (V,E,w), the single-

source shortest paths problem is to find the shortest 

paths from a vertex v ∈ V to all other vertices in V.  

 Dijkstra's algorithm is similar to Prim's algorithm. It 

maintains a set of nodes for which the shortest 

paths are known.  

 It grows this set based on the node closest to 

source using one of the nodes in the current 

shortest path set.  



SINGLE-SOURCE SHORTEST PATHS: 

DIJKSTRA'S ALGORITHM 

Dijkstra's sequential single-source shortest paths algorithm. 



DIJKSTRA'S ALGORITHM: PARALLEL 

FORMULATION 

 Very similar to the parallel formulation of Prim's 

algorithm for minimum spanning trees.  

 The weighted adjacency matrix is partitioned using 

the 1-D block mapping.  

 Each process selects, locally, the node closest to 

the source, followed by a global reduction to select 

next node.  

 The node is broadcast to all processors and the l-

vector updated.  

 The parallel performance of Dijkstra's algorithm is 

identical to that of Prim's algorithm.  



ALL-PAIRS SHORTEST PATHS  

 Given a weighted graph G(V,E,w), the all-pairs 

shortest paths problem is to find the shortest paths 

between all pairs of vertices vi, vj ∈ V.  

 A number of algorithms are known for solving this 

problem.  



ALL-PAIRS SHORTEST PATHS: MATRIX-

MULTIPLICATION BASED ALGORITHM  

 Consider the multiplication of the weighted 

adjacency matrix with itself - except, in this case, 

we replace the multiplication operation in matrix 

multiplication by addition, and the addition 

operation by minimization.  

 Notice that the product of weighted adjacency 

matrix with itself returns a matrix that contains 

shortest paths of length 2 between any pair of 

nodes.  

 It follows from this argument that An contains all 

shortest paths. 



MATRIX-MULTIPLICATION BASED ALGORITHM  



MATRIX-MULTIPLICATION BASED ALGORITHM  

 An is computed by doubling powers - i.e., as A, A2, 

A4, A8, and so on.  

 We need log n matrix multiplications, each taking 

time O(n3).  

 The serial complexity of this procedure is O(n3log 

n).  

 This algorithm is not optimal, since the best known 

algorithms have complexity O(n3).  

 



MATRIX-MULTIPLICATION BASED ALGORITHM: 

PARALLEL FORMULATION  

 Each of the log n matrix multiplications can be 

performed in parallel.  

 We can use n3/log n processors to compute each 

matrix-matrix product in time log n.  

 The entire process takes O(log2n) time.  

 



DIJKSTRA'S ALGORITHM  

 Execute n instances of the single-source shortest 

path problem, one for each of the n source vertices.  

 Complexity is O(n3).  

 



DIJKSTRA'S ALGORITHM: PARALLEL 

FORMULATION  

 Two parallelization strategies - execute each of the 

n shortest path problems on a different processor 

(source partitioned), or use a parallel formulation of 

the shortest path problem to increase concurrency 

(source parallel).  



DIJKSTRA'S ALGORITHM: SOURCE 

PARTITIONED FORMULATION  

 Use n processors, each processor Pi finds the 

shortest paths from vertex vi to all other vertices by 

executing Dijkstra's sequential single-source 

shortest paths algorithm.  

 It requires no interprocess communication 

(provided that the adjacency matrix is replicated at 

all processes).  

 The parallel run time of this formulation is: Θ(n2).  

 While the algorithm is cost optimal, it can only use n 

processors. Therefore, the isoefficiency due to 

concurrency is p3.  

 



DIJKSTRA'S ALGORITHM: SOURCE PARALLEL 

FORMULATION 

 In this case, each of the shortest path problems is further 

executed in parallel. We can therefore use up to n2 

processors.  

 Given p processors (p > n), each single source shortest 

path problem is executed by p/n processors.  

 Using previous results, this takes time:  

 

 

 

 For cost optimality, we have p = O(n2/log n) and the 

isoefficiency is Θ((p log p)1.5).  



FLOYD'S ALGORITHM  

 For any pair of vertices vi, vj ∈ V, consider all paths 

from vi to vj whose intermediate vertices belong to 

the set {v1,v2,…,vk}. Let pi
(
,
k
j
) (of weight di

(
,
k
j
) be the 

minimum-weight path among them.  

 If vertex vk is not in the shortest path from vi to vj, 

then pi
(
,
k
j
) is the same as pi

(
,
k
j
-1).  

 If f vk is in pi
(
,
k
j
), then we can break pi

(
,
k
j
) into two 

paths - one from vi to vk and one from vk to vj . Each 

of these paths uses vertices from {v1,v2,…,vk-1}.  

 



FLOYD'S ALGORITHM  

 From our observations, the following recurrence relation 

follows:  

 This equation must be computed for each pair of nodes 

and for  k = 1, n. The serial complexity is O(n3).  



FLOYD'S ALGORITHM  

Floyd's all-pairs shortest paths algorithm. This program 

computes the all-pairs shortest paths of the graph G = 

(V,E) with adjacency matrix A.  



FLOYD'S ALGORITHM: PARALLEL 

FORMULATION USING 2-D BLOCK MAPPING  

 Matrix D(k) is divided into p blocks of size (n / √p) x 
(n / √p).  

 Each processor updates its part of the matrix during 
each iteration.  

 To compute dl
(
,
k
k
-1) processor Pi,j must get dl

(
,
k
k
-1) 

and dk
(
,
k
r
-1).  

 In general, during the kth iteration, each of the √p 
processes containing part of the kth row send it to 
the √p  - 1 processes in the same column.  

 Similarly, each of the √p processes containing part 
of the kth column sends it to the √p - 1 processes in 
the same row.  



FLOYD'S ALGORITHM: PARALLEL 

FORMULATION USING 2-D BLOCK MAPPING  

(a) Matrix D(k) distributed by 2-D block mapping into √p  x √p subblocks, 

and (b) the subblock of D(k) assigned to process Pi,j.  



FLOYD'S ALGORITHM: PARALLEL 

FORMULATION USING 2-D BLOCK MAPPING  

(a) Communication patterns used in the 2-D block mapping. When computing di
(
,
k
j
), 

information must be sent to the highlighted process from two other processes along 
the same row and column. (b) The row and column of √p processes that contain the 

kth row and column send them along process columns and rows.  



FLOYD'S ALGORITHM: PARALLEL 

FORMULATION USING 2-D BLOCK MAPPING  

Floyd's parallel formulation using the 2-D block mapping. P*,j denotes 
all the processes in the jth column, and Pi,* denotes all the processes 

in the ith row. The matrix D(0) is the adjacency matrix.  



FLOYD'S ALGORITHM: PARALLEL 

FORMULATION USING 2-D BLOCK MAPPING  

 During each iteration of the algorithm, the kth row and kth 

column of processors perform a one-to-all broadcast 

along their rows/columns.  

 The size of this broadcast is n/√p elements, taking time 

Θ((n log p)/ √p).  

 The synchronization step takes time Θ(log p).  

 The computation time is Θ(n2/p).  

 The parallel run time of the 2-D block mapping 

formulation of Floyd's algorithm is  



FLOYD'S ALGORITHM: PARALLEL 

FORMULATION USING 2-D BLOCK MAPPING  

 The above formulation can use O(n2 / log2 n) 

processors cost-optimally.  

 The isoefficiency of this formulation is Θ(p1.5 log3 p).  

 This algorithm can be further improved by relaxing 

the strict synchronization after each iteration.  

 



FLOYD'S ALGORITHM: SPEEDING THINGS UP 

BY PIPELINING  

 The synchronization step in parallel Floyd's 

algorithm can be removed without affecting the 

correctness of the algorithm.  

 A process starts working on the kth iteration as soon 

as it has computed the (k-1)th iteration and has the 

relevant parts of the D(k-1) matrix.  



FLOYD'S ALGORITHM: SPEEDING THINGS UP 

BY PIPELINING  

Communication protocol followed in the pipelined 2-D block mapping formulation of 
Floyd's algorithm. Assume that process 4 at time t has just computed a segment of the 

kth column of the D(k-1) matrix. It sends the segment to processes 3 and 5. These 
processes receive the segment at time t + 1 (where the time unit is the time it takes for 
a matrix segment to travel over the communication link between adjacent processes). 
Similarly, processes farther away from process 4 receive the segment later. Process 1 

(at the boundary) does not forward the segment after receiving it.  



FLOYD'S ALGORITHM: SPEEDING THINGS UP 

BY PIPELINING  

 In each step, n/√p elements of the first row are sent from 

process Pi,j to Pi+1,j.  

 Similarly, elements of the first column are sent from process 

Pi,j to process Pi,j+1.  

 Each such step takes time Θ(n/√p).  

 After Θ(√p) steps, process P√p ,√p gets the relevant elements of 

the first row and first column in time Θ(n).  

 The values of successive rows and columns follow after time 

Θ(n2/p) in a pipelined mode.  

 Process P√p ,√p finishes its share of the shortest path 

computation in time Θ(n3/p) + Θ(n).  

 When process P√p ,√p has finished the (n-1)th iteration, it sends 

the relevant values of the nth row and column to the other 

processes.  



FLOYD'S ALGORITHM: SPEEDING THINGS UP 

BY PIPELINING  

 The overall parallel run time of this formulation is  

 

 

 

 

 The pipelined formulation of Floyd's algorithm uses 

up to O(n2) processes efficiently.  

 The corresponding isoefficiency is Θ(p1.5).  



ALL-PAIRS SHORTEST PATH: COMPARISON  

 The performance and scalability of the all-pairs shortest 
paths algorithms on various architectures with   bisection 
bandwidth. Similar run times apply to all   cube 
architectures, provided that processes are properly 
mapped to the underlying processors.  



TRANSITIVE CLOSURE  

 If G = (V,E) is a graph, then the transitive closure of 

G is defined as the graph G* = (V,E*), where E* = 

{(vi,vj) | there is a path from vi to vj in G}  

 The connectivity matrix of G is a matrix A* = (ai
*
,j) 

such that ai
*
,j = 1 if there is a path from vi to vj or i = 

j, and ai
*
,j = ∞ otherwise.  

 To compute A* we assign a weight of 1 to each 

edge of E and use any of the all-pairs shortest 

paths algorithms on this weighted graph.  

 



CONNECTED COMPONENTS  

 The connected components of an undirected graph are 

the equivalence classes of vertices under the ``is 

reachable from'' relation.  

A graph with three connected components: {1,2,3,4}, 

{5,6,7}, and {8,9}.  



CONNECTED COMPONENTS: DEPTH-FIRST 

SEARCH BASED ALGORITHM  

 Perform DFS on the graph to get a forest - eac tree in the 

forest corresponds to a separate connected component.  

Part (b) is a depth-first forest obtained from depth-first 

traversal of the graph in part (a). Each of these trees is a 

connected component of the graph in part (a).  



CONNECTED COMPONENTS: PARALLEL 

FORMULATION  

 Partition the graph across processors and run 

independent connected component algorithms on 

each processor. At this point, we have p spanning 

forests.  

 In the second step, spanning forests are merged 

pairwise until only one spanning forest remains.  

 



CONNECTED COMPONENTS: PARALLEL 

FORMULATION     

Computing connected components in parallel. The adjacency matrix of the graph G in (a) 
is partitioned into two parts (b). Each process gets a subgraph of G ((c) and (e)). Each 
process then computes the spanning forest of the subgraph ((d) and (f)). Finally, the 

two spanning trees are merged to form the solution.  



CONNECTED COMPONENTS: PARALLEL 

FORMULATION  

 To merge pairs of spanning forests efficiently, the 

algorithm uses disjoint sets of edges.  

 We define the following operations on the disjoint 

sets:  

 find(x)  

 returns a pointer to the representative element of the set 

containing x . Each set has its own unique 

representative.  

 union(x, y)  

 unites the sets containing the elements x and y. The two 

sets are assumed to be disjoint prior to the operation.  

 



CONNECTED COMPONENTS: PARALLEL 

FORMULATION  

 For merging forest A into forest B, for each edge 

(u,v) of A, a find operation is performed to 

determine if the vertices are in the same tree of B.  

 If not, then the two trees (sets) of B containing u 

and v are united by a union operation.  

 Otherwise, no union operation is necessary.  

 Hence, merging A and B requires at most 2(n-1) 

find operations and (n-1) union operations.  

 



CONNECTED COMPONENTS: PARALLEL 1-D 

BLOCK MAPPING  

 The n x n adjacency matrix is partitioned into p 

blocks.  

 Each processor can compute its local spanning 

forest in time Θ(n2/p).  

 Merging is done by embedding a logical tree into 

the topology. There are log p merging stages, and 

each takes time Θ(n). Thus, the cost due to 

merging is Θ(n log p).  

 During each merging stage, spanning forests are 

sent between nearest neighbors. Recall that Θ(n) 

edges of the spanning forest are transmitted.  



CONNECTED COMPONENTS: PARALLEL 1-D 

BLOCK MAPPING  

 The parallel run time of the connected-component 

algorithm is  

 

 

 

 

 For a cost-optimal formulation p = O(n / log n). The 

corresponding isoefficiency is Θ(p2 log2 p).  



ALGORITHMS FOR SPARSE GRAPHS  

 A graph G = (V,E) is sparse if |E| is much smaller than 

|V|2.  

Examples of sparse graphs: (a) a linear graph, in which each vertex has two incident 

edges; (b) a grid graph, in which each vertex has four incident vertices; and (c) a 

random sparse graph. 



ALGORITHMS FOR SPARSE GRAPHS  

 Dense algorithms can be improved significantly if 

we make use of the sparseness. For example, the 

run time of Prim's minimum spanning tree algorithm 

can be reduced from Θ(n2) to Θ(|E| log n).  

 Sparse algorithms use adjacency list instead of an 

adjacency matrix.  

 Partitioning adjacency lists is more difficult for 

sparse graphs - do we balance number of vertices 

or edges?  

 Parallel algorithms typically make use of graph 

structure or degree information for performance.  

 



ALGORITHMS FOR SPARSE GRAPHS  

A street map (a) can be represented by a graph (b). In the graph shown 
in (b), each street intersection is a vertex and each edge is a street 
segment. The vertices of (b) are the intersections of (a) marked by 

dots.  



FINDING A MAXIMAL INDEPENDENT SET  

 A set of vertices I ⊂ V  is called independent if no pair of 
vertices in I is connected via an edge in G. An 
independent set is called maximal if by including any 
other vertex not in I, the independence property is 
violated.  

Examples of independent and maximal independent sets. 



FINDING A MAXIMAL INDEPENDENT SET (MIS)  

 Simple algorithms start by MIS I to be empty, and 

assigning all vertices to a candidate set C.  

 Vertex v from C is moved into I and all vertices 

adjacent to v are removed from C.  

 This process is repeated until C is empty.  

 This process is inherently serial!  



FINDING A MAXIMAL INDEPENDENT SET (MIS)  

 Parallel MIS algorithms use randimization to gain 

concurrency (Luby's algorithm for graph coloring).  

 Initially, each node is in the candidate set C. Each 

node generates a (unique) random number and 

communicates it to its neighbors.  

 If a nodes number exceeds that of all its neighbors, 

it joins set I. All of its neighbors are removed from 

C.  

 This process continues until C is empty.  

 On average, this algorithm converges after 

O(log|V|) such steps.  



FINDING A MAXIMAL INDEPENDENT SET (MIS)  

The different augmentation steps of Luby's randomized maximal 
independent set algorithm. The numbers inside each vertex 
correspond to the random number assigned to the vertex. 



FINDING A MAXIMAL INDEPENDENT SET 

(MIS): PARALLEL FORMULATION  

 We use three arrays, each of length n - I, which 

stores nodes in MIS, C, which stores the candidate 

set, and R, the random numbers.  

 Partition C across p processors. Each processor 

generates the corresponding values in the R array, 

and from this, computes which candidate vertices 

can enter MIS.  

 The C array is updated by deleting all the neighbors 

of vertices that entered MIS.  

 The performance of this algorithm is dependent on 

the structure of the graph.  



SINGLE-SOURCE SHORTEST PATHS  

 Dijkstra's algorithm, modified to handle sparse 

graphs is called Johnson's algorithm.  

 The modification accounts for the fact that the 

minimization step in Dijkstra's algorithm needs to be 

performed only for those nodes adjacent to the 

previously selected nodes.  

 Johnson's algorithm uses a priority queue Q to 

store the value l[v] for each vertex v ∈ (V – VT).  

 



SINGLE-SOURCE SHORTEST PATHS: 

JOHNSON'S ALGORITHM 

Johnson's sequential single-source shortest paths algorithm. 



SINGLE-SOURCE SHORTEST PATHS: 

PARALLEL JOHNSON'S ALGORITHM  

 Maintaining strict order of Johnson's algorithm 

generally leads to a very restrictive class of parallel 

algorithms.  

 We need to allow exploration of multiple nodes 

concurrently. This is done by simultaneously 

extracting p nodes from the priority queue, updating 

the neighbors' cost, and augmenting the shortest 

path.  

 If an error is made, it can be discovered (as a 

shorter path) and the node can be reinserted with 

this shorter path.  



SINGLE-SOURCE SHORTEST PATHS: 

PARALLEL JOHNSON'S ALGORITHM  

An example of the modified Johnson's algorithm for processing unsafe vertices 
concurrently.  



SINGLE-SOURCE SHORTEST PATHS: 

PARALLEL JOHNSON'S ALGORITHM  

 Even if we can extract and process multiple nodes 

from the queue, the queue itself is a major 

bottleneck.  

 For this reason, we use multiple queues, one for 

each processor. Each processor builds its priority 

queue only using its own vertices.  

 When process Pi extracts the vertex u ∈ Vi, it sends 

a message to processes that store vertices 

adjacent to u.  

 Process Pj, upon receiving this message, sets the 

value of l[v] stored in its priority queue to 

min{l[v],l[u] + w(u,v)}. 



SINGLE-SOURCE SHORTEST PATHS: 

PARALLEL JOHNSON'S ALGORITHM  

 If a shorter path has been discovered to node v, it is 

reinserted back into the local priority queue.  

 The algorithm terminates only when all the queues 

become empty.  

 A number of node paritioning schemes can be used 

to exploit graph structure for performance.  


