
GRAPH ALGORITHMS

TOPIC OVERVIEW

 Definitions and Representation

 Minimum Spanning Tree: Prim's Algorithm

 Single-Source Shortest Paths: Dijkstra's Algorithm

 All-Pairs Shortest Paths

 Transitive Closure

 Connected Components

 Algorithms for Sparse Graphs

DEFINITIONS AND REPRESENTATION

 An undirected graph G is a pair (V,E), where V is a
finite set of points called vertices and E is a finite
set of edges.

 An edge e ∈ E is an unordered pair (u,v), where u,v
∈ V.

 In a directed graph, the edge e is an ordered pair
(u,v). An edge (u,v) is incident from vertex u and is
incident to vertex v.

 A path from a vertex v to a vertex u is a sequence
<v0,v1,v2,…,vk> of vertices where v0 = v, vk = u, and
(vi, vi+1) ∈ E for I = 0, 1,…, k-1.

 The length of a path is defined as the number of
edges in the path.

DEFINITIONS AND REPRESENTATION

a) An undirected graph and (b) a directed graph.

DEFINITIONS AND REPRESENTATION

 An undirected graph is connected if every pair of

vertices is connected by a path.

 A forest is an acyclic graph, and a tree is a

connected acyclic graph.

 A graph that has weights associated with each

edge is called a weighted graph.

DEFINITIONS AND REPRESENTATION

 Graphs can be represented by their adjacency

matrix or an edge (or vertex) list.

 Adjacency matrices have a value ai,j = 1 if nodes i

and j share an edge; 0 otherwise. In case of a

weighted graph, ai,j = wi,j, the weight of the edge.

 The adjacency list representation of a graph G =

(V,E) consists of an array Adj[1..|V|] of lists. Each

list Adj[v] is a list of all vertices adjacent to v.

 For a grapn with n nodes, adjacency matrices take

Θ(n2) space and adjacency list takes Θ(|E|) space.

DEFINITIONS AND REPRESENTATION

An undirected graph and its adjacency matrix representation.

An undirected graph and its adjacency list representation.

MINIMUM SPANNING TREE

 A spanning tree of an undirected graph G is a

subgraph of G that is a tree containing all the

vertices of G.

 In a weighted graph, the weight of a subgraph is the

sum of the weights of the edges in the subgraph.

 A minimum spanning tree (MST) for a weighted

undirected graph is a spanning tree with minimum

weight.

MINIMUM SPANNING TREE

An undirected graph and its minimum spanning tree.

MINIMUM SPANNING TREE: PRIM'S

ALGORITHM

 Prim's algorithm for finding an MST is a greedy

algorithm.

 Start by selecting an arbitrary vertex, include it into

the current MST.

 Grow the current MST by inserting into it the vertex

closest to one of the vertices already in current

MST.

MINIMUM SPANNING TREE: PRIM'S ALGORITHM

Prim's minimum spanning tree algorithm.

MINIMUM SPANNING TREE: PRIM'S

ALGORITHM

Prim's sequential minimum spanning tree algorithm.

PRIM'S ALGORITHM: PARALLEL FORMULATION

 The algorithm works in n outer iterations - it is hard to execute

these iterations concurrently.

 The inner loop is relatively easy to parallelize. Let p be the

number of processes, and let n be the number of vertices.

 The adjacency matrix is partitioned in a 1-D block fashion,

with distance vector d partitioned accordingly.

 In each step, a processor selects the locally closest node,

followed by a global reduction to select globally closest node.

 This node is inserted into MST, and the choice broadcast to all

processors.

 Each processor updates its part of the d vector locally.

PRIM'S ALGORITHM: PARALLEL FORMULATION

The partitioning of the distance array d and the adjacency matrix A
among p processes.

PRIM'S ALGORITHM: PARALLEL FORMULATION

 The cost to select the minimum entry is O(n/p + log

p).

 The cost of a broadcast is O(log p).

 The cost of local updation of the d vector is O(n/p).

 The parallel time per iteration is O(n/p + log p).

 The total parallel time is given by O(n2/p + n log p).

 The corresponding isoefficiency is O(p2log2p).

SINGLE-SOURCE SHORTEST PATHS

 For a weighted graph G = (V,E,w), the single-

source shortest paths problem is to find the shortest

paths from a vertex v ∈ V to all other vertices in V.

 Dijkstra's algorithm is similar to Prim's algorithm. It

maintains a set of nodes for which the shortest

paths are known.

 It grows this set based on the node closest to

source using one of the nodes in the current

shortest path set.

SINGLE-SOURCE SHORTEST PATHS:

DIJKSTRA'S ALGORITHM

Dijkstra's sequential single-source shortest paths algorithm.

DIJKSTRA'S ALGORITHM: PARALLEL

FORMULATION

 Very similar to the parallel formulation of Prim's

algorithm for minimum spanning trees.

 The weighted adjacency matrix is partitioned using

the 1-D block mapping.

 Each process selects, locally, the node closest to

the source, followed by a global reduction to select

next node.

 The node is broadcast to all processors and the l-

vector updated.

 The parallel performance of Dijkstra's algorithm is

identical to that of Prim's algorithm.

ALL-PAIRS SHORTEST PATHS

 Given a weighted graph G(V,E,w), the all-pairs

shortest paths problem is to find the shortest paths

between all pairs of vertices vi, vj ∈ V.

 A number of algorithms are known for solving this

problem.

ALL-PAIRS SHORTEST PATHS: MATRIX-

MULTIPLICATION BASED ALGORITHM

 Consider the multiplication of the weighted

adjacency matrix with itself - except, in this case,

we replace the multiplication operation in matrix

multiplication by addition, and the addition

operation by minimization.

 Notice that the product of weighted adjacency

matrix with itself returns a matrix that contains

shortest paths of length 2 between any pair of

nodes.

 It follows from this argument that An contains all

shortest paths.

MATRIX-MULTIPLICATION BASED ALGORITHM

MATRIX-MULTIPLICATION BASED ALGORITHM

 An is computed by doubling powers - i.e., as A, A2,

A4, A8, and so on.

 We need log n matrix multiplications, each taking

time O(n3).

 The serial complexity of this procedure is O(n3log

n).

 This algorithm is not optimal, since the best known

algorithms have complexity O(n3).

MATRIX-MULTIPLICATION BASED ALGORITHM:

PARALLEL FORMULATION

 Each of the log n matrix multiplications can be

performed in parallel.

 We can use n3/log n processors to compute each

matrix-matrix product in time log n.

 The entire process takes O(log2n) time.

DIJKSTRA'S ALGORITHM

 Execute n instances of the single-source shortest

path problem, one for each of the n source vertices.

 Complexity is O(n3).

DIJKSTRA'S ALGORITHM: PARALLEL

FORMULATION

 Two parallelization strategies - execute each of the

n shortest path problems on a different processor

(source partitioned), or use a parallel formulation of

the shortest path problem to increase concurrency

(source parallel).

DIJKSTRA'S ALGORITHM: SOURCE

PARTITIONED FORMULATION

 Use n processors, each processor Pi finds the

shortest paths from vertex vi to all other vertices by

executing Dijkstra's sequential single-source

shortest paths algorithm.

 It requires no interprocess communication

(provided that the adjacency matrix is replicated at

all processes).

 The parallel run time of this formulation is: Θ(n2).

 While the algorithm is cost optimal, it can only use n

processors. Therefore, the isoefficiency due to

concurrency is p3.

DIJKSTRA'S ALGORITHM: SOURCE PARALLEL

FORMULATION

 In this case, each of the shortest path problems is further

executed in parallel. We can therefore use up to n2

processors.

 Given p processors (p > n), each single source shortest

path problem is executed by p/n processors.

 Using previous results, this takes time:

 For cost optimality, we have p = O(n2/log n) and the

isoefficiency is Θ((p log p)1.5).

FLOYD'S ALGORITHM

 For any pair of vertices vi, vj ∈ V, consider all paths

from vi to vj whose intermediate vertices belong to

the set {v1,v2,…,vk}. Let pi
(
,
k
j
) (of weight di

(
,
k
j
) be the

minimum-weight path among them.

 If vertex vk is not in the shortest path from vi to vj,

then pi
(
,
k
j
) is the same as pi

(
,
k
j
-1).

 If f vk is in pi
(
,
k
j
), then we can break pi

(
,
k
j
) into two

paths - one from vi to vk and one from vk to vj . Each

of these paths uses vertices from {v1,v2,…,vk-1}.

FLOYD'S ALGORITHM

 From our observations, the following recurrence relation

follows:

 This equation must be computed for each pair of nodes

and for k = 1, n. The serial complexity is O(n3).

FLOYD'S ALGORITHM

Floyd's all-pairs shortest paths algorithm. This program

computes the all-pairs shortest paths of the graph G =

(V,E) with adjacency matrix A.

FLOYD'S ALGORITHM: PARALLEL

FORMULATION USING 2-D BLOCK MAPPING

 Matrix D(k) is divided into p blocks of size (n / √p) x
(n / √p).

 Each processor updates its part of the matrix during
each iteration.

 To compute dl
(
,
k
k
-1) processor Pi,j must get dl

(
,
k
k
-1)

and dk
(
,
k
r
-1).

 In general, during the kth iteration, each of the √p
processes containing part of the kth row send it to
the √p - 1 processes in the same column.

 Similarly, each of the √p processes containing part
of the kth column sends it to the √p - 1 processes in
the same row.

FLOYD'S ALGORITHM: PARALLEL

FORMULATION USING 2-D BLOCK MAPPING

(a) Matrix D(k) distributed by 2-D block mapping into √p x √p subblocks,

and (b) the subblock of D(k) assigned to process Pi,j.

FLOYD'S ALGORITHM: PARALLEL

FORMULATION USING 2-D BLOCK MAPPING

(a) Communication patterns used in the 2-D block mapping. When computing di
(
,
k
j
),

information must be sent to the highlighted process from two other processes along
the same row and column. (b) The row and column of √p processes that contain the

kth row and column send them along process columns and rows.

FLOYD'S ALGORITHM: PARALLEL

FORMULATION USING 2-D BLOCK MAPPING

Floyd's parallel formulation using the 2-D block mapping. P*,j denotes
all the processes in the jth column, and Pi,* denotes all the processes

in the ith row. The matrix D(0) is the adjacency matrix.

FLOYD'S ALGORITHM: PARALLEL

FORMULATION USING 2-D BLOCK MAPPING

 During each iteration of the algorithm, the kth row and kth

column of processors perform a one-to-all broadcast

along their rows/columns.

 The size of this broadcast is n/√p elements, taking time

Θ((n log p)/ √p).

 The synchronization step takes time Θ(log p).

 The computation time is Θ(n2/p).

 The parallel run time of the 2-D block mapping

formulation of Floyd's algorithm is

FLOYD'S ALGORITHM: PARALLEL

FORMULATION USING 2-D BLOCK MAPPING

 The above formulation can use O(n2 / log2 n)

processors cost-optimally.

 The isoefficiency of this formulation is Θ(p1.5 log3 p).

 This algorithm can be further improved by relaxing

the strict synchronization after each iteration.

FLOYD'S ALGORITHM: SPEEDING THINGS UP

BY PIPELINING

 The synchronization step in parallel Floyd's

algorithm can be removed without affecting the

correctness of the algorithm.

 A process starts working on the kth iteration as soon

as it has computed the (k-1)th iteration and has the

relevant parts of the D(k-1) matrix.

FLOYD'S ALGORITHM: SPEEDING THINGS UP

BY PIPELINING

Communication protocol followed in the pipelined 2-D block mapping formulation of
Floyd's algorithm. Assume that process 4 at time t has just computed a segment of the

kth column of the D(k-1) matrix. It sends the segment to processes 3 and 5. These
processes receive the segment at time t + 1 (where the time unit is the time it takes for
a matrix segment to travel over the communication link between adjacent processes).
Similarly, processes farther away from process 4 receive the segment later. Process 1

(at the boundary) does not forward the segment after receiving it.

FLOYD'S ALGORITHM: SPEEDING THINGS UP

BY PIPELINING

 In each step, n/√p elements of the first row are sent from

process Pi,j to Pi+1,j.

 Similarly, elements of the first column are sent from process

Pi,j to process Pi,j+1.

 Each such step takes time Θ(n/√p).

 After Θ(√p) steps, process P√p ,√p gets the relevant elements of

the first row and first column in time Θ(n).

 The values of successive rows and columns follow after time

Θ(n2/p) in a pipelined mode.

 Process P√p ,√p finishes its share of the shortest path

computation in time Θ(n3/p) + Θ(n).

 When process P√p ,√p has finished the (n-1)th iteration, it sends

the relevant values of the nth row and column to the other

processes.

FLOYD'S ALGORITHM: SPEEDING THINGS UP

BY PIPELINING

 The overall parallel run time of this formulation is

 The pipelined formulation of Floyd's algorithm uses

up to O(n2) processes efficiently.

 The corresponding isoefficiency is Θ(p1.5).

ALL-PAIRS SHORTEST PATH: COMPARISON

 The performance and scalability of the all-pairs shortest
paths algorithms on various architectures with bisection
bandwidth. Similar run times apply to all cube
architectures, provided that processes are properly
mapped to the underlying processors.

TRANSITIVE CLOSURE

 If G = (V,E) is a graph, then the transitive closure of

G is defined as the graph G* = (V,E*), where E* =

{(vi,vj) | there is a path from vi to vj in G}

 The connectivity matrix of G is a matrix A* = (ai
*
,j)

such that ai
*
,j = 1 if there is a path from vi to vj or i =

j, and ai
*
,j = ∞ otherwise.

 To compute A* we assign a weight of 1 to each

edge of E and use any of the all-pairs shortest

paths algorithms on this weighted graph.

CONNECTED COMPONENTS

 The connected components of an undirected graph are

the equivalence classes of vertices under the ``is

reachable from'' relation.

A graph with three connected components: {1,2,3,4},

{5,6,7}, and {8,9}.

CONNECTED COMPONENTS: DEPTH-FIRST

SEARCH BASED ALGORITHM

 Perform DFS on the graph to get a forest - eac tree in the

forest corresponds to a separate connected component.

Part (b) is a depth-first forest obtained from depth-first

traversal of the graph in part (a). Each of these trees is a

connected component of the graph in part (a).

CONNECTED COMPONENTS: PARALLEL

FORMULATION

 Partition the graph across processors and run

independent connected component algorithms on

each processor. At this point, we have p spanning

forests.

 In the second step, spanning forests are merged

pairwise until only one spanning forest remains.

CONNECTED COMPONENTS: PARALLEL

FORMULATION

Computing connected components in parallel. The adjacency matrix of the graph G in (a)
is partitioned into two parts (b). Each process gets a subgraph of G ((c) and (e)). Each
process then computes the spanning forest of the subgraph ((d) and (f)). Finally, the

two spanning trees are merged to form the solution.

CONNECTED COMPONENTS: PARALLEL

FORMULATION

 To merge pairs of spanning forests efficiently, the

algorithm uses disjoint sets of edges.

 We define the following operations on the disjoint

sets:

 find(x)

 returns a pointer to the representative element of the set

containing x . Each set has its own unique

representative.

 union(x, y)

 unites the sets containing the elements x and y. The two

sets are assumed to be disjoint prior to the operation.

CONNECTED COMPONENTS: PARALLEL

FORMULATION

 For merging forest A into forest B, for each edge

(u,v) of A, a find operation is performed to

determine if the vertices are in the same tree of B.

 If not, then the two trees (sets) of B containing u

and v are united by a union operation.

 Otherwise, no union operation is necessary.

 Hence, merging A and B requires at most 2(n-1)

find operations and (n-1) union operations.

CONNECTED COMPONENTS: PARALLEL 1-D

BLOCK MAPPING

 The n x n adjacency matrix is partitioned into p

blocks.

 Each processor can compute its local spanning

forest in time Θ(n2/p).

 Merging is done by embedding a logical tree into

the topology. There are log p merging stages, and

each takes time Θ(n). Thus, the cost due to

merging is Θ(n log p).

 During each merging stage, spanning forests are

sent between nearest neighbors. Recall that Θ(n)

edges of the spanning forest are transmitted.

CONNECTED COMPONENTS: PARALLEL 1-D

BLOCK MAPPING

 The parallel run time of the connected-component

algorithm is

 For a cost-optimal formulation p = O(n / log n). The

corresponding isoefficiency is Θ(p2 log2 p).

ALGORITHMS FOR SPARSE GRAPHS

 A graph G = (V,E) is sparse if |E| is much smaller than

|V|2.

Examples of sparse graphs: (a) a linear graph, in which each vertex has two incident

edges; (b) a grid graph, in which each vertex has four incident vertices; and (c) a

random sparse graph.

ALGORITHMS FOR SPARSE GRAPHS

 Dense algorithms can be improved significantly if

we make use of the sparseness. For example, the

run time of Prim's minimum spanning tree algorithm

can be reduced from Θ(n2) to Θ(|E| log n).

 Sparse algorithms use adjacency list instead of an

adjacency matrix.

 Partitioning adjacency lists is more difficult for

sparse graphs - do we balance number of vertices

or edges?

 Parallel algorithms typically make use of graph

structure or degree information for performance.

ALGORITHMS FOR SPARSE GRAPHS

A street map (a) can be represented by a graph (b). In the graph shown
in (b), each street intersection is a vertex and each edge is a street
segment. The vertices of (b) are the intersections of (a) marked by

dots.

FINDING A MAXIMAL INDEPENDENT SET

 A set of vertices I ⊂ V is called independent if no pair of
vertices in I is connected via an edge in G. An
independent set is called maximal if by including any
other vertex not in I, the independence property is
violated.

Examples of independent and maximal independent sets.

FINDING A MAXIMAL INDEPENDENT SET (MIS)

 Simple algorithms start by MIS I to be empty, and

assigning all vertices to a candidate set C.

 Vertex v from C is moved into I and all vertices

adjacent to v are removed from C.

 This process is repeated until C is empty.

 This process is inherently serial!

FINDING A MAXIMAL INDEPENDENT SET (MIS)

 Parallel MIS algorithms use randimization to gain

concurrency (Luby's algorithm for graph coloring).

 Initially, each node is in the candidate set C. Each

node generates a (unique) random number and

communicates it to its neighbors.

 If a nodes number exceeds that of all its neighbors,

it joins set I. All of its neighbors are removed from

C.

 This process continues until C is empty.

 On average, this algorithm converges after

O(log|V|) such steps.

FINDING A MAXIMAL INDEPENDENT SET (MIS)

The different augmentation steps of Luby's randomized maximal
independent set algorithm. The numbers inside each vertex
correspond to the random number assigned to the vertex.

FINDING A MAXIMAL INDEPENDENT SET

(MIS): PARALLEL FORMULATION

 We use three arrays, each of length n - I, which

stores nodes in MIS, C, which stores the candidate

set, and R, the random numbers.

 Partition C across p processors. Each processor

generates the corresponding values in the R array,

and from this, computes which candidate vertices

can enter MIS.

 The C array is updated by deleting all the neighbors

of vertices that entered MIS.

 The performance of this algorithm is dependent on

the structure of the graph.

SINGLE-SOURCE SHORTEST PATHS

 Dijkstra's algorithm, modified to handle sparse

graphs is called Johnson's algorithm.

 The modification accounts for the fact that the

minimization step in Dijkstra's algorithm needs to be

performed only for those nodes adjacent to the

previously selected nodes.

 Johnson's algorithm uses a priority queue Q to

store the value l[v] for each vertex v ∈ (V – VT).

SINGLE-SOURCE SHORTEST PATHS:

JOHNSON'S ALGORITHM

Johnson's sequential single-source shortest paths algorithm.

SINGLE-SOURCE SHORTEST PATHS:

PARALLEL JOHNSON'S ALGORITHM

 Maintaining strict order of Johnson's algorithm

generally leads to a very restrictive class of parallel

algorithms.

 We need to allow exploration of multiple nodes

concurrently. This is done by simultaneously

extracting p nodes from the priority queue, updating

the neighbors' cost, and augmenting the shortest

path.

 If an error is made, it can be discovered (as a

shorter path) and the node can be reinserted with

this shorter path.

SINGLE-SOURCE SHORTEST PATHS:

PARALLEL JOHNSON'S ALGORITHM

An example of the modified Johnson's algorithm for processing unsafe vertices
concurrently.

SINGLE-SOURCE SHORTEST PATHS:

PARALLEL JOHNSON'S ALGORITHM

 Even if we can extract and process multiple nodes

from the queue, the queue itself is a major

bottleneck.

 For this reason, we use multiple queues, one for

each processor. Each processor builds its priority

queue only using its own vertices.

 When process Pi extracts the vertex u ∈ Vi, it sends

a message to processes that store vertices

adjacent to u.

 Process Pj, upon receiving this message, sets the

value of l[v] stored in its priority queue to

min{l[v],l[u] + w(u,v)}.

SINGLE-SOURCE SHORTEST PATHS:

PARALLEL JOHNSON'S ALGORITHM

 If a shorter path has been discovered to node v, it is

reinserted back into the local priority queue.

 The algorithm terminates only when all the queues

become empty.

 A number of node paritioning schemes can be used

to exploit graph structure for performance.

